Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices

To approximate f(A)b—the action of a matrix function on a vector—by a Krylov subspace method, restarts may become mandatory due to storage requirements for the Arnoldi basis or due to the growing computational complexity of evaluating f on a Hessenberg matrix of growing size. A number of restarting methods have been proposed in the literature in recent years and there has been substantial algor...

متن کامل

Convergence Analysis of Restarted Krylov Subspace Eigensolvers

The A-gradient minimization of the Rayleigh quotient allows to construct robust and fastconvergent eigensolvers for the generalized eigenvalue problem for (A,M) with symmetric and positive definite matrices. The A-gradient steepest descent iteration is the simplest case of more general restarted Krylov subspace iterations for the special case that all step-wise generated Krylov subspaces are tw...

متن کامل

Convergence analysis of Krylov subspace methods †

One of the most powerful tools for solving large and sparse systems of linear algebraic equations is a class of iterative methods called Krylov subspace methods. Their significant advantages like low memory requirements and good approximation properties make them very popular, and they are widely used in applications throughout science and engineering. The use of the Krylov subspaces in iterati...

متن کامل

Implementation of a Restarted Krylov Subspace Method for the Evaluation of Matrix Functions

A new implementation of restarted Krylov subspace methods for evaluating f(A)b for a function f , a matrix A and a vector b is proposed. In contrast to an implementation proposed previously, it requires constant work and constant storage space per restart cycle. The convergence behavior of this scheme is discussed and a new stopping criterion based on an error indicator is given. The performanc...

متن کامل

A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions

We show how the Arnoldi algorithm for approximating a function of a matrix times a vector can be restarted in a manner analogous to restarted Krylov subspace methods for solving linear systems of equations. The resulting restarted algorithm reduces to other known algorithms for the reciprocal and the exponential functions. We further show that the restarted algorithm inherits the superlinear co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2014

ISSN: 0895-4798,1095-7162

DOI: 10.1137/140973463